Asymptotic behaviour in linear least squares problems

نویسنده

  • M. R. Osborne
چکیده

The asymptotic behaviour of a class of least squares problems when subjected to structured perturbations is considered. It is permitted that the number of rows (observations) in the design matrix can be unbounded while the number of degrees of freedom (variables) is fixed. It is shown that for certain classes of random data the solution sensitivity depends asymptotically on the condition number of the design matrix rather than on its square which is the generic result for inconsistent systems when the norm of the residual is not small. Extension of these results to the case where the perturbations are due to rounding errors is considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Asymptotic distributions of least square estimations in a regression model with singular errors∗

We study some problems of the parameter inference which are in connection with wide sense stationary long memory processes. Here we present the asymptotic behaviour of the corelation matrix and the limit distributions of the LSE for the regression coefficients in some types of linear models with singular Gaussian and non-Gaussian errors.

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

Rank-based variable selection

This note considers variable selection in the robust linear model via R-estimates. The proposed rank-based approach is a generalization of the penalized least squares estimators where we replace the least squares loss function with Jaeckel’s (1972) dispersion function. Our rank-based method is robust to outliers in the errors and has roots in traditional nonparametric statistics for simple loca...

متن کامل

On perturbations of linear least squares problems

The asymptotic behaviour of a class of least squares problems when subjected to structured perturbations is considered. It is permitted that the number of rows (observations) in the design matrix can be unbounded while the number of degrees of freedom (variables) is fixed. It is shown that for certain classes of random data the solution sensitivity depends asymptotically on the condition number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009